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ABSTRACT

Comparison of the 2022 Monkeypox (Mpox) Outbreak Using Mathematical

Modeling and Time Series Clustering

by

Mark-Daniels Tamakloe

Monkeypox virus (MPXV) is the causative agent of monkeypox (mpox), a rare viral

disease that affects humans [1]. It is primarily found in Africa and is transmitted

to humans through contact with sick animals, particularly rodents and monkeys, or

through human-to-human transmission [2]. From the beginning of May 2022, cases of

mpox have been recorded from non-endemic nations, and the illness has continued to

be reported in other endemic nations. Majority of confirmed cases have been recorded

in Europe and North America. In this thesis, we compare the spread of the outbreak

across the top ten countries using a combination of two different techniques. First,

we look at the similarity of the outbreak from a mathematical modeling point of

view using a simple SIR model to describe the dynamics of the spread and compare

parameters of the model among most prevalent countries. Using the model as the

general trend of the outbreak, we then look at the spread from a clustering perspective,

grouping countries based on a time-series clustering technique.
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1 INTRODUCTION

Monkeypox virus (MPXV) is a zoonotic virus that causes an infectious disease

in humans and non-human primates [1]. While it is a rare disease, outbreaks of

monkeypox (mpox) have been reported in Central and West Africa, as well as in the

United States, and some parts of Europe [2]. The disease was first discovered in 1958

when outbreaks occurred among monkeys kept for research purposes [1]. Since then,

sporadic outbreaks of monkeypox have been reported in Central and West African

countries, with human cases first reported in 1970 in the Democratic Republic of

Congo (DRC) [3]. The incubation period is typically 3 - 17 days and during this

period, a person does not have symptoms and may feel fine [5]. The symptoms of

mpox are similar to those of smallpox and include fever, headache, muscle aches, and

a rash that typically starts on the face and then spreads to other parts of the body [6].

In severe cases, mpox can cause complications such as pneumonia, sepsis, and even

death [4]. It can initially look like pimples or blisters and may be itchy. The rash will

go through several stages, including scabs, before healing [4]. There is currently no

particular therapy or vaccination for the mpox virus, and treatment consists mostly

of supportive care. Preventive actions such as avoiding contact with diseased animals

and exercising excellent hygiene, on the other hand, can help lower the chance of

transmission [8].

In recent years, there have been several outbreaks of mpox in African countries,

but in 2022, the disease was reported in several countries outside of Africa, including

the United States and several European countries. According to the World Health

Organization (WHO), the top ten most prevalent mpox countries as of November,
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2022 are United States, Brazil, Spain, France, Colombia, United Kingdom, Peru,

Mexico, Germany, and Canada [43]. Figure 1 shows a comparison of the total number

of infections from March 2022 through November 2022 for the top ten countries whiles

Figures 2 and 3 show the progression of the outbreak across the most prevalent

months.

Figure 1: Total Cases of Monkeypox Outbreak Per Country based on WHO data [43].

Figure 1 shows that the country with the highest number of mpox cases as at

the end of November 2022 was the United States (n = 28, 379), followed by Brazil

(n = 9162), Spain (n = 7317), France (n = 4094), the United Kingdom (n = 3698),

Germany (n = 3662), Colombia (n = 3298), Peru (n = 3048), Mexico (n = 2654),

and Canada (n = 1437) [16]. Also, the number of cases in the United States far

exceeds all other countries in the top ten whiles Brazil and Spain are really close in

terms of the number of cases. France, United Kingdom, Germany, Colombia, Peru,

Mexico all have almost equal number of cases with Canada having the least number

of mpox cases.
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Figure 2: Time Series Progression for monkeypox in the top 10 plotted on the same

scale [43].

From Figure 2 above, it is easy to tell there is an outbreak but difficult to discern

any similarities in the outbreak when plotted on the same scale. Also, the initial start

date of the outbreak seems to be different across each country with some variation in

peak levels of the infection. In Figure 3, we plot the outbreak on their own respective

scales.

By plotting the graphs of the top ten countries on their respective scales, we can

see that all the countries have fairly defined peaks although some of the peaks are

wider than others indicating that the outbreak might have stayed at its peak for

longer in some countries than others. For example, USA and Germany seem to have

some similarities in the shapes of the peaks which indicates that the outbreak rises

steadily, attains a maximum at the peak and then falls steadily again, whiles Brazil

12



Figure 3: Time Series Progression for monkeypox in the top 10 plotted on different

scales [43].

and UK also have shapes that shows that the outbreak lasted longer at their peaks.

The aim of this thesis is to compare the spread of the mpox across the top ten

countries by combining two different approaches. First, we look at the similarity of

the spread by using an epidemiological model to describe the dynamics of the spread

and compare parameters of the model among the most prevalent countries. Then, we

use time series data to identify the trend of the disease and group countries based on

clustering techniques.

This thesis is organized into five chapters. In Chapter 2, we discuss mathematical

modeling using the United States mpox data as an example. In this section, we

develop both a SIR and SEIR model for mpox. We then set up inverse problem

for parameter estimation and compare the two models using the Akaike Information
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Criterion (AIC). We then finally display modeling results for all ten countries. In

Chapter 3, we introduce the bootsrapping method to compute bootstrap intervals

for the model parameters and then compare the results for the top ten countries.

In Chapter 4, time series clustering is introduced and implemented to group the

countries into clusters based on the similarity of the outbreak between countries. We

then conclude in Chapter 5 with a summary and future work.
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2 MATHEMATICAL MODELING FOR U.S. DATA

Mathematical modeling is a powerful technique that helps scientists, engineers,

and researchers to simplify and abstractly describe and evaluate complicated systems.

Mathematical models can help researchers in understanding the behavior of complex

systems, forecasting their future behavior, and identifying potential interventions

or solutions to issues by employing mathematical equations, algorithms, and other

analytical tools. It has numerous applications in a wide range of disciplines, including

physics, engineering, biology, economics, finance, ecology, and social sciences, among

many others [7]. In general, mathematical models can be divided into two broad

categories: deterministic models and stochastic models [9]. Deterministic models are

based on a set of equations that describe the behavior of a system with certainty, while

stochastic models incorporate randomness or uncertainty into the equations [10]. The

study of infectious disease transmission and the evaluation of the effects of treatments

like immunization, quarantine, and social isolation are both done in epidemiology

using mathematical models. The formal definition of the term mathematical modeling

as used in this thesis is given in Definition 2.1:

Definition 2.1. Mathematical modeling is the process of using mathematical equa-

tions and tools to represent and analyze real-world systems and phenomena. It in-

volves creating a simplified representation of a system, often with the use of math-

ematical symbols and equations, and using it to make predictions or test hypotheses

about the behavior of the system [11].

There are a group of models, epidemiological models, used to model the transmis-
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sion of infectious diseases in the population. In this thesis, we consider two epidemi-

ological models which are the SIR (Susceptible-Infected-Recovered) and the SEIR

(Susceptible-Exposed-Infected-Recovered) model[12]. The SEIR model seems most

appropriate for this thesis because of the incubation period of the mpox virus; how-

ever, the SIR is a simpler model.

2.1 The SIR Model

The SIR model is a mathematical model that is used to study and forecast the

spread of infectious diseases[13]. At any given time t, the population is divided into

three groups under the model: susceptible (S), infected (I), and recovered (R). The

model assumes that the rate of infection is proportional to the number of susceptible

and infected persons, and that the rate of recovery is related to the number of infected

individuals. The model also assumes that once a person recovers from the sickness,

they are immune and cannot be infected again. The dynamics of the model are shown

in Figure 4.

Figure 4: Compartmental diagram of the SIR epidemic model

The set of differential equations that describes the SIR model are given by

16



dS

dt
= −βSI

dI

dt
= βSI − γI (1)

dR

dt
= γI

where β represents the effective transmission rate, γ is the recovery rate and the total

population is given by N = S + I + R, which is constant over time because dN
dt

= 0.

The variables S, I, and R in epidemiological models such as the SIR or SEIR models

describe the number of persons in different disease states and are time dependent.

Sometimes, the equation includes standardizing of the β parameter by the size of

the population N , but we instead account for the value of N when comparing the

effective reproduction number, R0, between countries in Section 3.

2.2 The SEIR Model

The SEIR model is a derivative of the SIR model in that it has an additional

compartment called the exposed compartment (E) which is included to capture the

latency period of the infection [14]. This model assumes a latent period which means

there is a period of time during which an infected individual is asymptomatic but still

infectious. The dynamics of the SEIR model are shown in Figure 5.
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Figure 5: Compartmental diagram of the SEIR epidemic model

The set of ordinary differential equations that describe the SEIR model are given

by

dS

dt
= −βSI

dE

dt
= βSI − σE

dI

dt
= −σE − γI (2)

dR

dt
= γI

where β is the effective transmission rate, σ is the incubation rate, γ is the recovery

rate and the total population N = S +E + I +R, where N is constant and S, E, I,

and R are functions of time.

2.3 Inverse Problems

Inverse problems are a type of mathematical problem in which the goal is to

estimate the parameters of a mathematical or statistical model of a physical system

18



based on observations of that system [15]. In other words, instead of predicting the

output of a system given the parameters, inverse problems entail determining the

parameters of a system given the observed outputs [18, 21]. In this thesis, we use the

Ordinary Least-Squares (OLS) method to estimate the parameters of the SIR model

[22]. Here, we assume constant variance of the Y variable where our statistical model

is of the form

Yj = f(tj; θ0) + ϵj, j = 1, 2, ..., N

where Yj is a random variable for the observation system at time tj, f(tj; θ0) is the

observed part of the solution of our statistical model with θ0 considered to be the

‘true’ model parameters, ϵj is the measurement error with the assumption that ϵj is

independent and identically distributed with mean zero and constant variance [23].

The OLS estimate for the parameter θ is given by

θOLS = θNOLS(Y ) = arg min
θ∈Ω0

N∑
j=1

|Yj − f(tj; θ)|2.

In other words θOLS is estimated by minimizing

J(θ) =
N∑
j=1

|yj − f(tj; θ)|2

where yj is the data used for the estimation [18]. In this thesis, we wanted to estimate

the parameters β which is the effective transmission rate of the virus, t0 which is the

initial time of the first infected case, and S0 which is the initial susceptible population.

Note that we assume the average rate of recovery γ is constant across this limited

outbreak as the virus has not had significant time to mutate. We set γ = 1
22

per

day, where 22 days is the mean of the infection period for the mpox. However, we

also assume an initial infected individual at unknown time t0. Although cases are
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reported, we are assuming not all cases are reported and therefore the first infected

case may occur at an unknown time. We further assume that at the initial stages of

the outbreak, the entire population is not at risk, so we wanted to estimate the initial

susceptible population S0. We used the fminsearch algorithm in MATLAB which

employs the Nelder-Mead simplex method, an optimization algorithm to estimate

our parameters.

The Nelder-Mead simplex technique is a derivative-free optimization procedure

that iteratively searches for the minimum of a function using a geometric approach

with a simplex (a set of vertices)[19]. The parameter estimation problem in the

context of the SIR and SEIR models is frequently described as a convex optimiza-

tion problem. Because the models are linear combinations of nonlinear components,

the parameters act as coefficients in these combinations. As a result, the objective

function in the optimization problem becomes convex. Convexity assures that the

Nelder-Mead algorithm, a more advanced version of the “bisection” approach, con-

verges to a unique minimum that is guaranteed to be within the convex polytope’s

interior. The convexity of the objective function and parameter space is critical be-

cause it ensures the reliability and global optimality of the Nelder-Mead algorithm

estimates.

Table 1 gives the estimated parameters for US data, while Figure 6 shows the

graph of the data with optimal parameters. From Figure 6, we see that the model fits

the US mpox data well. Although the model “averages” the data well, we note that it

does not capture the peak of the infection. This can be problematic as the peak of the

infection is determined by the actual data, and our model here would suggest these
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peaks are outliers. This can be further witnessed by the higher residuals in Figure 7

near the peak of the infection. This is one of the problems which might be encountered

with this approach. However, this averaging behavior is found in the models for almost

all countries as we show in Figure 8 in Section 2.5. Figure 7 displays the residuals

(ϵj) as a function of time which suggests that the constant variance assumption is

satisfied. The assumption of constant variance is closely related to the assumption of

normally distributed residuals with a mean of zero. This assumption suggests that

the predicted values will be equal to the true values on average, with any difference

owing to random noise or measurement error [18, 20]. If the assumption is correct,

the residual plot should show a random scatter of points around a horizontal line

at zero as seen in Figure 7 and there will be no fan-like pattern in the data. This

suggests that the residuals are symmetrically distributed around zero and that the

errors have no systematic bias or trend.

Table 1: Parameter Estimates

Parameter Description Estimate
β (persons/day) Effective Transmission Rate 1.0740× 10−4

t0 (days) Time First Infected May 31, 2022
S0 (persons) Susceptible Population 1389
R0 Basic Reproduction Number 3.28
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Figure 6: Graph of US mpox data with Optimal Parameters

Figure 7: Residual Plot of US mpox data with Optimal Parameters

22



2.4 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is a statistical metric used to assess and

select amongst alternative models based on their goodness of fit and complexity. First

proposed in 1974 by Japanese statistician Hirotugu Akaike, the AIC is based on the

principle that a good model should fit the data well, but not be too complex [24]. It

is defined as

AIC = −2 ln

(
L(θ̂MLE|y)

)
+2κθ

where log-likelihood is the maximum value of the likelihood function for the model,

and κθ is the number of parameters in the model. Since we are using the OLS method

to estimate parameters of our model, then we use the AIC under a constant variance

statistical model which is given in [24] by

AICOLS = N ln

(∑N
j=1[yj − f(tj; θ0)]

2

N

)
+ 2(κθ + 1)

The AIC penalizes models with a larger number of parameters, because increasing

the number of parameters tends to improve the fit to the data but at the expense

of increased complexity. The AIC value is a relative indicator of model quality, with

lower values suggesting better models. When two or more models are compared, the

model with the lowest AIC value is often favored because it provides the greatest

balance between goodness of fit and model complexity.

The weights, also known as the Akaike weights help us judge how much more

likely the best model is compared to the next best model [24]. It is defined as

wi(AIC) =
exp(−1

2
∆i(AIC))∑K

k=1 exp(−
1
2
∆k(AIC))

23



where K is the number of models being compared. The sum of the AIC weights for

all the models being compared is equal to 1, so the higher the weight, the better

the model. Akaike weights are useful when comparing multiple models because they

provide a way to account for the uncertainty in model selection. Instead of just

selecting the model with the lowest AIC score, one can use the weights to evaluate

the relative likelihood of each model being the best model. In our work, we compared

the two epidemiological models, SIR and SEIR to determine which is the best using

the AIC.

We observed that the AIC for the SEIR model was 1110.65 with a weight of 0.185

and the AIC for the SIR model was 1107.68 with a weight of 0.815. In view of this,

we chose the SIR model as the best model for this research given that it had a lower

AIC and a higher weight.

2.5 Initial Model Results for All Countries

In this research, we aimed at estimating the effective transmission rate (β), the

initial time of the first infected case (t0), the initial susceptible population S0 and

then calculating the basic reproduction number R0 for the top ten mpox countries

using the formula R0 =
βS0

γ
[25] where γ is fixed at 1

22
. In Table 2 below, we give the

results for β, S0, t0 and R0 for the top ten monkeypox countries. The β coefficient

represents the effective transmission rate of the infection in each country, with higher

values indicating a faster rate of transmission. The S0 value represents the estimated

size of the susceptible population at the beginning of the epidemic, and the t0 value

represents the estimated time at which the first infection occurred in each country.
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Table 2: Model Results for the Top 10 Mpox Countries

Country β(×10−4) persons/day S0

persons

t0 (2022)

days

R0

United States 1.0740 1389 May 31 3.28
Brazil 2.3356 508 May 27 2.61
Spain 3.6154 384 May 13 3.05
France 5.7474 219 May 20 2.77
United Kingdom 5.3102 208 April 17 2.43
Germany 8.0127 182 May 12 3.21
Colombia 6.9501 195 July 20 2.98
Peru 6.2642 181 June 12 2.49
Mexico 5.4011 211 July 10 2.51
Canada 13.3056 81 May 13 2.37

Based on the values in the table above, it can be seen that Canada has the highest

estimated value for the beta coefficient, indicating a relatively higher rate of trans-

mission of the infection in this country compared to the other countries in the table.

The United States has the lowest estimated value for the beta coefficient, indicating

a relatively slower rate of transmission. The initial susceptible populations (S0) vary

widely among the countries, with Canada having the smallest estimated susceptible

population, while the United States has the largest. The initial time of the first infec-

tion (t0) also varies among the countries, with most countries experiencing their first

infection in May 2022. In the table, the R0 numbers represent the basic reproductive

number for each of the top ten mpox countries. R0 is a critical epidemiological mea-

sure that sheds light on the dynamics of infectious disease transmission. It calculates

the average number of new infections caused by a single infected person in a com-

pletely vulnerable community [26]. The mpox outbreak is expected to continue in a
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country if R0 has a value > 1 and to end if R0 is < 1 [27]. The basic reproduction

number (R0) is an important indication for understanding infectious disease transmis-

sion dynamics. When the R0 values in the table are analyzed, it is clear that countries

such as Colombia, United States, Spain, and Germany have higher R0 values, indi-

cating a higher level of infectiousness and perhaps greater obstacles in preventing

the disease’s spread. Brazil, France, Mexico, and the UK have moderate R0 values,

indicating a slightly reduced but still significant amount of infectiousness. Peru, and

Canada has the lowest R0 value, implying a lower level of infectiousness and, maybe,

better disease control. When interpreting the implications of R0 values, it is critical

to consider other factors such as population density, healthcare infrastructure, and

public health programs.

Figure 8 shows a subplot comparing various country models. Each subplot depicts

a different country, such as the United States, Brazil, Spain, France, the United

Kingdom, Germany, Colombia, Peru, Mexico, and Canada. The subplots show the

data for each country and includes a line plot of the model for the corresponding

country. This visualization enables a thorough comparison of the model outputs for

the top 10 countries, providing analysis and insights into the mpox outbreak. We

note that for each country, the model appears to capture the trend of the outbreak

well. We see the maxima for most of the model are again well-below the maxima

for the data, but the data is “real” indicators of maxima values. This again shows a

constraint of this approach.
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Figure 8: Model Solutions with Data for the Top 10 Countries[43]

Figure 9 shows a graph of the comparison of parameter values for β and S0 for the

top 10 countries. The graph employs dual y-axes, with the left y-axis representing

the β parameter and the right y-axis representing S0 , allowing the two sets of data

to be plotted separately. The x-axis shows the names of the countries arranged in

order of prevalence as given in Figure 1.
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Figure 9: Comparison of Parameter Values For β and S0[43]

The values of β are represented by green asterisks, while the values S0 are repre-

sented by red triangles. The graph visualizes the relationship between these parameter

values and their associated values across countries. It offers a clear comparison, in-

dicating any patterns or differences. There seems to be a relationship between the

size of S0 and the size of β and this could be due to the population influence on β.

However, it was difficult to tell which countries cluster together based on the param-

eter values. For example, by looking at the US, we see a very small value for β but a
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bigger value for S0. On the other hand for Canada, we see a very small value for S0

and a very big value for β. This makes it difficult to tell how similar or different the

outbreaks are across the countries, especially given the widespread range of values.

Incorporating the size of the initial susceptible population (S0) in the calculation of

R0 (as shown in Table 2), we are now able to determine some similarities in outbreaks

across countries.

We now point out some of the limitations of the OLS algorithm in our parameter

estimation and then further investigate the potential uncertainty in the parameter

estimates in the next section.

The OLS method is sensitive to optimization algorithm [28]. It relies on opti-

mization methods such as Nelder Mead, which can fail spectacularly if there isn’t a

unique minimum. This sensitivity to the optimization process may cause instability

or inaccuracy in the outcomes.

For example, Nelder Mead is widely used for convex problems and works well in

low-dimensional cases with a few parameters. However, the reliability and effective-

ness of OLS can be jeopardized when applied to non-convex problems with a larger

parameter space[29].

Finally, OLS can sometimes provide curve fits that indicate maximum values that

are far lower than the observed data [30]. This can be problematic, particularly when

substantial data supports greater maximum values that are not outliers. Such dispar-

ities between model predictions and actual data may cast doubt on the dependability

and defensibility on the OLS method.
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3 UNCERTAINTY ANALYSIS

Uncertainty analysis is a systematic method for assessing and quantifying the

uncertainties involved in measurements, computations, models, or any other process

that has built-in variability or errors [32]. The results or conclusions drawn from

these methods are intended to have a certain level of reliability or credibility. In this

thesis, we used the bootstrapping technique in computing confidence intervals for our

parameter estimates.

Bootstrapping is a statistical resampling technique used to estimate the sampling

distribution of a statistic or to draw conclusions about population parameters. It en-

tails repeatedly sampling by using the residuals from the original dataset with replace-

ment to create several simulated datasets [24]. This resampling procedure generates

simulated datasets that closely mimic the original data, allowing for the estimate of

uncertainty metrics such as confidence intervals and standard errors. Bootstrapping is

a non-parametric strategy that does not rely on specific distributional assumptions.

It is especially effective when traditional statistical approaches are constrained by

small sample sizes or breaches of distributional assumptions. It offers a versatile and

reliable tool for estimating uncertainty and assessing the dependability of statistical

outcomes [31].

In order to obtain parameter estimates, we considered a constant variance model

and absolute error measurement datasets in this thesis. We followed the bootstrapping

algorithm used in [24, p. 96-98] to compute bootstrap intervals for our estimated
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parameters. Our statistical model is of the form

yj = f(tj; θ0) + ϵj, j = 1, 2, ..., N

We first assume that θ̂BOOT is our bootstrapping estimate for the true parameter θ0

and then follow the steps below.

1. Using Ordinary Least Square (OLS) approach, estimate the bootstrapping es-

timate θ̂0 from the entire sample {yj}Nj=1.

2. We then define the standard residuals in terms of this estimate as

rj =

√
N

N − κ0

(
yj − f(tj; θ̂

0)
)
, j = 1, 2, 3, ..., N

where κ0 is the number of estimated parameters and N is the sample size.

3. By using random sampling, create a bootstrap sample of sizeN from the original

data residuals {r1, . . . , rN} to form a bootstrapping sample {rm1 , . . . , rN}

4. Now, we create bootstrap sample points

ymj = f(tj; θ̂
0) + rmj , j = 1, 2, ..., N

5. We now, obtain a new estimate θ̂m+1 from the bootstrapping sample by using

OLS.

6. Set m = m+1 and repeat steps 3–5 until m ≥ M (e.g., here M = 500 as in our

calculations below).

By following the bootstrapping algorithm as outlined in [24, p. 96-98], we used a

constant variance data together with the Ordinary Least Squares (OLS) to compute

the parameters for our models as given in Table 3 and Table 4.
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Table 3 and Table 4 present median bootstrap parameter estimates for the effective

transmission rate β, initial susceptible population S0, the initial time of the first

infected case t0 of the mpox, and the calculated R0 values along with their 90%

bootstrap intervals respectively for the top ten mpox countries. These intervals were

based upon 90% of the bootstrapping estimates being in the given interval and was

calculated based on the 5% and 95% quantiles. These intervals provide ranges of

plausible values for each parameter, accounting for the uncertainty in the estimates

in Table 3.

Table 3: Median Parameter Estimates for the Top 10 Mpox Countries

Country β(×10−4) persons/day S0

persons

t0 (2022)

days

R0

United States 1.029 1417 May 29 3.21
Brazil 2.233 521 May 25 2.56
Spain 2.999 422 May 3 2.79
France 4.155 262 May 2 2.40
United Kingdom 4.424 232 April 6 2.25
Germany 7.966 181 May 11 3.18
Colombia 6.662 198 July 17 2.90
Peru 5.744 190 June 8 2.40
Mexico 4.471 235 July 28 2.32
Canada 11.865 87 May 8 2.27

In Table 3, the R0 values reveal information about the potential transmission

dynamics of the mpox disease in each country. According to the provided estimations,

the R0 values range from 2.25 to 3.21 among countries. These numbers represent

the average number of secondary infections induced by a single infected person in

a susceptible population. These R0 estimates can be used to better understand and

32



evaluate the infectiousness and potential spread of mpox in different nations, assisting

in the development of effective control and prevention efforts. The estimated values

of β per day range from 1.029×10−4 to 11.865×10−4. A higher β score underlines the

necessity for more vigorous and urgent measures to contain the transmission of the

virus. The initial start time of the epidemic (t0) is given in days, and the estimated

values range from April 6 to July 28, 2022.

Table 4: Median Parameter Estimates for the Top 10 Mpox Countries

Country 90% CI for

β (×10−4)

90% CI

for S0

90% CI for t0

(2022)

90% CI

for R0

United States [0.973, 1.084] [1390, 1450] [May 25, June 1] [3.10, 3.33]
Brazil [2.074, 2.432] [501, 539] [May 19, May 31] [2.46, 2.69]
Spain [2.433, 3.833] [383, 464] [April 18, May 17] [2.46, 3.23]
France [2.790, 6.430] [217, 327] [March 30, May 26] [2.00, 3.06]
United Kingdom [3.673, 5.310] [211, 257] [March 23, April 18] [2.07, 2.48]
Germany [7.443, 8.618] [176, 186] [May 8, May 15] [3.03, 3.35]
Colombia [5.719, 7.780] [187, 213] [July 10, July 25] [2.65, 3.25]
Peru [4.970, 6.639] [177, 205] [May 30, June 16] [2.24, 2.59]
Mexico [1.789, 7.892] [176, 429] [May 1, July 28] [1.71, 3.12]
Canada [9.821, 14.805] [78, 97] [April 28, May 19] [2.08, 2.55]

From Table 4, the 90% bootstrap intervals indicate the level of uncertainty sur-

rounding these estimates. These estimates provide useful information about the char-

acteristics of mpox in each country. The variation in β, S0, t0, and R0 values between

countries indicates differences in transmission rates, population susceptibility, and

disease dynamics. These parameter estimations and their accompanying intervals are

critical for understanding and modeling the spread of mpox, allowing policymakers

and public health professionals to implement effective disease management and miti-
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gation methods. The estimated values and their bootstrap intervals offer insights into

the parameters of interest and their likely values for each country. Figure 10 gives a

plot of the variation in β values for the top 10 countries.

Figure 10: Boxplot Comparison For the Variation of β Across Countries[43]

From Figure 10, we visualize the estimated values for β using a boxplot. We again

observe that Canada stands out with the highest value among the countries listed.

This suggests that Canada has a relatively higher rate of transmission of the mpox

infection compared to the other countries. Conversely, the United States exhibits

the lowest estimated value for β, indicating a relatively slower rate of transmission.

However, the reverse is true for the initial susceptible population as given in Figure
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11 which shows a boxplot comparison of the values of S0 across the top 10 mpox

countries.

Figure 11: Boxplot Comparison For the Variation of S0 Across Countries[43]

We observe from Figure 11 the estimated values for S0 and the variations using a

boxplot. We observe that Mexico has the highest variation in S0 with some outliers

among the countries listed. The US has the highest value for S0 as compared to

Canada which has the smallest value for S0. Next, we show in Figure 12 the variation

in R0 values across the top 10 mpox countries. We see that US has the least variation

in R0 as compared to Mexico which has the highest variation in R0 suggesting that

there is greater uncertainty and heterogeneity in the transmissibility of the mpox
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virus in Mexico than in the US.

Figure 12: Boxplot Comparison For the Variation of R0 Across Countries[43]

Directly comparing countries based on parameter values in the context of a com-

parative analysis of the mpox epidemic among prevalent countries can be difficult due

to the inverse-like relationship between certain parameters, such as β and S0. Even

using the calculated values of R0 which takes into account β and S0, we still can not

effectively determine which countries have trends that are similar across the course

of the outbreak. A more effective technique to addressing this issue is to convert the

parameter values into scaled trend data by dividing the model which already has the

values of β in it by the total population. By doing so, we are getting the data for

all the 10 countries on the same scale. We can then find patterns and commonalities

among the prevalent countries by applying clustering techniques to this scaled data,
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allowing for a more accurate and insightful comparison of the outbreak among the

countries.
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4 TIME SERIES CLUSTERING

In this thesis, we decided to group all the top 10 mpox countries based on certain

defined characteristics or differences exhibited by the countries. We used a technique

called time series clustering to achieve this aim. Clustering helps identify which of the

top 10 countries behave similarly or differently in terms of the spread and dynamics

of the mpox.

Time series clustering is a technique that groups similar time series data into

clusters based on similarities and trends [33]. It entails studying the data’s temporal

patterns and attributes in order to discover groups or clusters that display consistent

behavior across time [33, 34]. Each time series is represented in time series clustering

as a series of observations acquired at regular intervals. There are several techniques

to cluster time series data, but for the purpose of this thesis, we look at the hierarchical

clustering approach using Dynamic Time Warping as the distance metric on the top

10 mpox countries’ model-simulated data.

Our original WHO data had some missing values and typically when dealing with

time series data, a smoothing technique is applied to the data to distinguish the

noise from the overall trend. For our purposes, the mathematical model already

gives an average trend for the outbreak (recall Figure 8); therefore, we used the

model to generate a smoothed estimate for the daily outbreak. Due to the “inverse-

like” relationship between S0 and β for some countries, we wanted to get the overall

dynamics of the mpox, so we scaled the the data by dividing each country’s model-

simulated data by N = S0 + I0 + R0 = S0 + 1 where values of S0 are given Table

2. We furthermore assumed 0 infected population until the respective date give by
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t0 for the country. Figure 12 shows the comparison of mpox trends across countries

using scaled data. The plot compares the trends of mpox across different countries.

Each country’s data is plotted on the graph using the respective date and scaled

data. The legend on the graph indicates the country names for each line. This visual

comparison of the trends among the selected countries are based on their scaled data.

We used a technique called dynamic time warping to access the similarity between

these scaled trends and then hierarchical clustering to cluster the countries based on

their similarities.

Figure 13: Comparison of Mpox Trends Across Countries[43]

It is critical to remember that the population sizes are now expressed relative

to each country’s overall population number (N). As a result, the y-scale in the
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graph indicates a percentage or proportion of the overall population, with infected

individuals starting at 1
N

for each country. This adjustment enables for consistent

comparisons and interpretations across different populations while accounting for the

varying sizes of the populations.

4.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique used to compare the similarity of

two sequences that may differ in length or pace [35]. It is widely used in domains

including speech recognition, gesture recognition, and time series analysis [36]. The

core idea underlying Dynamic Time Warping is to warp the time axis of two sequences

to obtain an ideal alignment. This enables for the comparison of corresponding se-

quence elements, even if their lengths or speeds differ. The best alignment is found

by reducing the cumulative distance between the sequences’ corresponding elements.

Consider the finite sequences X = [X1, X2, X3, ..., Xn] and Y = [Y1, Y2, Y3, ..., Ym],

where n and m are the lengths of the sequences, respectively. Dynamic Time Warping

generates an n×m matrix, often known as the DTW matrix or accumulated cost ma-

trix, abbreviated as D. Each coefficient Di,j of D indicates the distance between the

numbers Xi and Yj in the sequences X and Y , respectively. Dynamic programming

is used to compute the DTW matrix iteratively [37].

The first step is to initialize the matrix with acceptable boundary conditions. This

is often accomplished by specifying D1,1 as the distance between the first elements of

X and Y and filling the first row and first column with the calculated distances from

the beginning point. The cumulative distance is then calculated for each element Di,j
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in the matrix as follows:

Di,j = AC(Xi, Yj) = (Xi − Yj)
2 +min{Di−1,j, Di,j−1, Di−1,j−1}

where the term AC(Xi, Yj) is the accumulated cost at Xi, Yj, the term (Xi − Yj)
2 is

taken as the Euclidean distance betweenXi and Yj, and the term min{Di−1,j, Di,j−1, Di−1,j−1}

is the cost of where it came from. Although the term AC(Xi, Yj) is not exactly the

Euclidean distance, it incorporates the Euclidean distance as part of the accumu-

lated cost calculation in the dynamic time warping algorithm. Recall the Euclidean

distance is given by:

||X − Y ||2 =
√

(X1 − Y1)2 + (X2 − Y2)2 + · · ·+ (Xn − Yn)2

Further more, the warped path allows for horizontal moves ((i, j) → (i, j+1)), vertical

moves ((i, j) → (i + 1, j)) and diagonal moves ((i, j) → (i + 1, j + 1)); therefore,

internal moves are accounted for by examining the previous locations Di−1,j, Di,j−1

and Di−1,j−1. After computing the DTW matrix, the best alignment path can be

found by backtracking from the bottom-left cell to the top-right cell, taking the path

with the shortest cumulative distance [38]. This alignment path represents the best

mapping between X and Y elements.

Consider the following example to demonstrate the DTW algorithm. Suppose we

have two time series sequences, X and Y with lengths n = 5 and m = 7 respectively:

X = [3, 1, 2, 2, 1], and Y = [2, 0, 0, 3, 3, 1, 0] [39]. The sequences X and Y start at

position 1, while X ends at position n = 5 and Y ends at position m = 7. X starts

at X1 = 3 whiles Y starts at Y1 = 2 and X ends at Xn = 1, whiles Y ends at Ym = 0.

This therefore means that X1 always pairs with Y1 and Xn always pairs with Yn.
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We then form an accumulated cost matrix in which the ‘next’ move is the original

‘distance’ between components plus the minimum between the choices of moving from

a specified adjacent point. It is easiest to visualize the warped path using an inverted

cost matrix. In Table 5, we begin by aligning the Y sequence in an opposite order so

that the first alignment is in the bottom corner position.

Table 5: Calculating Dynamic Time Warping Distances

0
1
3
3
0
0
2

3 1 2 2 1

The first component of the accumulated cost matrix is the component in the

bottom left which is only the Euclidean distance component since it is the first move

and is calculated as AC(X1 = 3, Y1 = 2) = (X1 − Y1)
2 = (3 − 2)2 = 1 as shown in

Table 6.
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Table 6: Calculating Dynamic Time Warping Distances

0
1
3
3
0
0
2 1

3 1 2 2 1

Now, consider the other entries on the bottom boundary starting with X2 = 1 and

Y1 = 2. For that entry, there is only a left component filled in already so we compute

the (X2, Y1) entry and then add the already filled in component on the left of it.

Thus, we get AC(X2 = 1, Y1 = 2) = (X2 − Y1)
2 +AC(X1, Y1) = (1− 2)2 = 1 + 1 = 2

as shown in Table 7.

Table 7: Calculating Dynamic Time Warping Distances

0
1
3
3
0
0
2 1 2

3 1 2 2 1
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Similarly for AC(Xi, Y1 = 2), i = 3, 4, 5, we have

AC(X3 = 2, Y1 = 2) = (2− 2)2 + AC(X2, Y1) = 0 + 2 = 2

AC(X4 = 2, Y1 = 2) = (2− 2)2 + AC(X3, Y1) = 0 + 2 = 2

AC(X5 = 1, Y1 = 2) = (1− 2)2 + AC(X4, Y1) = 1 + 2 = 3

which gives the completed buttom row shown in Table 8.

Table 8: Calculating Dynamic Time Warping Distances

0
1
3
3
0
0
2 1 2 2 2 3

3 1 2 2 1

We repeat a similar procedure for the first column starting with the next to last

entry in our inverted matrix i.e. X1 = 3 and Y2 = 0. For this entry, there is only a

bottom component so,

AC(X1 = 3, Y2 = 0) = (X1 − Y2)
2 + AC(X1, Y1) = (3− 0)2 + 1 = 10
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Similarly for AC(X3, Yj), j = 3, 4, 5, 6, 7, we have

AC(X1 = 3, Y3 = 0) = (3− 0)2 + AC(X1, Y2) = 9 + 10 = 19

AC(X1 = 3, Y4 = 3) = (3− 3)2 + AC(X1, Y3) = 0 + 19 = 19

AC(X1 = 3, Y5 = 3) = (3− 3)2 + AC(X1, Y4) = 0 + 19 = 19

AC(X1 = 3, Y6 = 1) = (3− 1)2 + AC(X1, Y5) = 4 + 19 = 23

AC(X1 = 3, Y7 = 0) = (3− 0)2 + AC(X1, Y6) = 9 + 23 = 32

The computed cells are shown in Table 9.

Table 9: Calculating Dynamic Time Warping Distances

0 32
1 23
3 19
3 19
0 19
0 10
2 1 2 2 2 3

3 1 2 2 1

Once the boundaries are filled, the interior points can be filled. For the AC(X2 =

1, Y2 = 0) entry, all previous entries are available; therefore we have

AC(X2 = 1, Y2 = 0) = (X2 − Y2)
2 +min{AC(X1, Y1), AC(X1, Y2), AC(X2, Y1)}

= (1− 0)2 +min{10, 1, 2}

= 1 + 1 = 2.
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Similarly for the X3 = 2, Y2 = 0 entry, we have

AC(X3 = 2, Y2 = 0) = (X3 − Y2)
2 +min{AC(X2, Y1), AC(X2, Y2), AC(X3, Y1)}

= (2− 0)2 +min{2, 2, 2}

= 4 + 2 = 6.

Now, for the X2 = 1, Y3 = 0 entry, we have

AC(X2 = 1, Y3 = 0) = (X2 − Y3)
2 +min{AC(X1, Y2), AC(X1, Y3), AC(X2, Y2)}

= (1− 0)2 +min{10, 19, 2}

= 1 + 2 = 3.

We follow a similar procedure and fill the rest of the cells as shown in Table 10. We

also plotted a heat map for the distance matrix in Python (see Figure 12) from the

accumulated cost matrix in Table 10.

To obtain the warped path, we started in the bottom left and moved up, right or

diagonal according to the lowest cost as illustrated by the arrows in Figure 13. We

thus have the following alignment X = [3, 1, 1, 2, 2, 1, 1] and Y = [2, 0, 0, 3, 3, 1, 0].

The best alignment of the two sequences is plotted in Figure 14.
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Table 10: Calculating Dynamic Time Warping Distances

0 32 12 10 10 6
1 23 11 6 6 5
3 19 11 5 5 9
3 19 7 4 5 8
0 19 3 6 10 4
0 10 2 6 6 3
2 1 2 2 2 3

3 1 2 2 1

Figure 14: Accumulated Cost Matrix For X and Y[39]
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Figure 15: Optimal Path Alignment For X and Y [39]

In Figure 14, we observe that the point 3 in the X sequence aligns with the point

2 in the Y sequence, 1 in the X sequence aligns with 0 twice in the Y sequence, 2

in the X sequence aligns with 3 in the Y sequence and so on. After using Dynamic

Time Warping to find the optimal alignment between X and Y , we can now calculate

the Euclidean distance between this best optimal alignment as:

DTW (X, Y ) =
√
(3− 2)2 + (1− 0)2 + (1− 0)2 + (1− 3)2 + (2− 3)2 + (1− 1)2 + (1− 0)2

= 2.45
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4.2 Dynamic Time Warping on Mpox Model-Simulated Data

By following the algorithm of the DTW as illustrated, we constructed a 10 × 10

distance matrix for the top 10 mpox model-simulated data.

For hierarchical clustering implementation, a distance matrix between series is

needed. The distance matrix is a square matrix that represents the pairwise distances

between our dataset’s series. Our Python method computes the DTW distance be-

tween each pair of series by iterating through the series indices and performing the

DTW algorithm, omitting self-comparisons. The distances obtained are then recorded

in a distance matrix. This distance matrix is an important input for hierarchical

clustering, allowing the series’ similarity patterns and hierarchical relationships to be

identified. Table 11 shows the output of the distance matrix.

Table 11: Dynamic Time Warping Distance Measure for the Top Ten Mpox Countries

Country US Brazil Spain France UK Germany Colombia Peru Mexico Canada
US 0.00 0.34 0.09 0.22 0.47 0.07 0.10 0.42 0.41 0.47

Brazil 0.34 0.00 0.21 0.08 0.08 0.29 0.18 0.05 0.08 0.09
Spain 0.09 0.21 0.00 0.11 0.32 0.06 0.09 0.29 0.31 0.33
France 0.22 0.08 0.11 0.00 0.18 0.18 0.11 0.15 0.19 0.19
UK 0.47 0.08 0.32 0.18 0.00 0.41 0.30 0.05 0.16 0.02

Germany 0.07 0.29 0.06 0.18 0.41 0.00 0.12 0.37 0.40 0.42
Colombia 0.10 0.18 0.09 0.11 0.30 0.12 0.00 0.26 0.24 0.31

Peru 0.42 0.05 0.29 0.15 0.05 0.37 0.26 0.00 0.06 0.04
Mexico 0.41 0.08 0.31 0.19 0.16 0.40 0.24 0.06 0.00 0.14
Canada 0.47 0.09 0.33 0.19 0.02 0.42 0.31 0.04 0.14 0.00

The table displays the pairwise distances between the entire outbreak in the var-

ious countries. Each cell in the table indicates the measurement of distance or dis-

similarity between two countries. DTW considers the local distances between cor-

responding elements of the time series and determines the best alignment between
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them [35]. The distances between countries in this table demonstrate their resem-

blance or dissimilarity based on specific criteria. A lower distance number indicates

greater similarity, whereas a higher distance shows greater dissimilarity [40]. Looking

at the first row, for example, we can see that the distance between the United States

and Brazil is 0.34, indicating a moderate amount of dissimilarity. The gap between

the UK and Canada, on the other hand, is only 0.02, indicating a higher degree of

similarity. Figure 15 shows the warp path between UK and Canada.

Figure 16: Warp Path Between UK and Canada

Figure 15 gives the optimal alignment path between UK and Canada using Dy-

namic Time Warping to visualize the correspond points and connecting lines.
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4.3 Hierarchical Clustering

Hierarchical clustering is a cluster analysis method that aims to create a hierarchy

of groups [41]. It is widely utilized in statistics and data mining. There are two types

of hierarchical clustering strategies: agglomerative and divisive. Each observation

begins in its own cluster in agglomerative clustering, and pairs of clusters are combined

as one advances up the hierarchy. All observations begin in one cluster in divisive

clustering, and splits are performed iteratively as one proceeds down the hierarchy.

Hierarchical clustering produces a tree-based representation of the objects, known as a

dendrogram. The complete linkage method is a distance measure used in hierarchical

clustering to determine the dissimilarity across clusters. It computes the distance

between two clusters as the maximum distance between any two data points from

each cluster [42]. We will give a simple example of how the complete linkage metric

works in forming clusters by the following steps.

1. Find the cluster pair with the shortest maximum distance between any two of

their members. In other words, find the cluster pair with the closest link.

2. Combine the two clusters to form a new cluster.

3. Calculate the maximum distance between any pair of nations in the merged

cluster and the other clusters to update the distance matrix.

4. Repeat the process until there is nothing to merge again in the distance matrix.

5. Make a dendrogram. Represent the clusters and their mergers as a dendrogram,

displaying the clusters’ hierarchical relationship.
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By using the distance matrix in Table 11, we will show how the complete linkage

method works to form clusters. According to the distances in the table, the shortest

distance is 0.02, which occurs between the UK and Canada. As a result, the UK and

Canada would form the first cluster. Then we update the distance matrix as follows

Table 12: Dynamic Time Warping Distance Measure for the Top Ten Mpox Countries

Country UK/Canada US Brazil Spain France Germany Colombia Peru Mexico
UK/Canada 0.00

US 0.47 0.00
Brazil 0.09 0.34 0.00
Spain 0.33 0.09 0.21 0.00
France 0.19 0.22 0.08 0.11 0.00

Germany 0.42 0.07 0.29 0.06 0.18 0.00
Colombia 0.31 0.10 0.18 0.09 0.11 0.12 0.00

Peru 0.05 0.42 0.05 0.29 0.15 0.12 0.26 0.00
Mexico 0.16 0.41 0.08 0.31 0.19 0.40 0.24 0.06 0.00

From Table 12, we left out the elements of the upper diagonal since the distance

matrix is symmetric. Using the complete linkage method, we compute the distances

between the pair UK/Canada and the rest of the countries. To do this, we find from

Table 11 the distance between US and UK which was 0.47. We then find the distance

between US and Canada which was 0.47. We choose the maximum of the two which

in this case will still be 0.47. Similarly, to find the distance between Brazil and the

UK/Canada pair, we first find the distance between Brazil and UK which was 0.08.

We then find the distance between Brazil and Canada which was 0.09 according to

Table 11. We finally find the maximum of the two distances which turns out to be

0.09. We follow the same approach to find the distances between UK/Canada and

the rest of the countries. Then we maintain the distances in other cells as they are
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in Table 11. With the updated distance matrix in Table 12, we repeat the process by

finding the shortest distance in the matrix. This happens to be 0.05 and this occurs

between the pair UK/Canada and Peru. This therefore means that UK/Canada and

Peru will form another cluster as shown in Table 13.

Table 13: Dynamic Time Warping Distance Measure for the Top Ten Mpox Countries

Country UK/Canada/Peru US Brazil Spain France Germany Colombia Mexico
UK/Canada/Peru 0.00

US 0.47 0.00
Brazil 0.09 0.34 0.00
Spain 0.33 0.09 0.21 0.00
France 0.19 0.22 0.08 0.11 0.00

Germany 0.42 0.07 0.29 0.06 0.18 0.00
Colombia 0.31 0.10 0.18 0.09 0.11 0.12 0.00
Mexico 0.16 0.41 0.08 0.31 0.19 0.40 0.24 0.00

This process continues repetitively until we no longer have any country to cluster.

We then obtain the linkages given by the dendrogram in Figure 16. UK, Canada and

Peru being clustered together confirms the results we saw in our calculations. The

dendrogram depicts the clusters’ hierarchical relationship. Each leaf node represents

a country, while the branches reflect the process of merging. The height of each

branch shows the distance between clusters. The dendrogram depicts the clusters’

hierarchical relationship.
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Figure 17: Dendrogram of Countries Based on Time Series Data

The graph takes an in-depth look at the entire linkage clustering approach for our

time series data. Based on their time series patterns, the resulting dendrogram can

provide insights into the similarities and hierarchical structure of the countries.

From the dendrogram above, we count the number of vertical branches (cluster

merges) intersecting this line at a height 0.45 and note the number of clusters gener-

ated at this height. We observe three clusters at this threshold. Figure 17 shows the

clusters formed at the 0.45 threshold.
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Figure 18: Clustering Results on Scaled Mpox Data

The examination of time series data from the top 10 countries (including the

United States, Germany, Peru, the United Kingdom, Canada, Brazil, Mexico, Spain,

France, and Colombia) found three unique clusters, each of which is important in un-

derstanding the dynamics of the outbreak across different nations. Cluster 1 consists

of the United States and Germany, indicating that these countries share underlying

characteristics that influence mpox cases. Cluster 2 contains Peru, the United King-

dom, Canada, Brazil, and Mexico, with similar tendencies but significant differences

across time. This cluster aids in the identification of shared dynamics and potential
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outbreak contributors. Cluster 3 includes Spain, France, and Colombia, demonstrat-

ing mpox pattern similarities among these countries. Analyzing the similarities be-

tween these clusters provides useful insights for understanding the dynamics of the

mpox outbreak and informing country-specific decision-making processes. Overall,

the clustering findings give light on the links and patterns that exist between nations,

assisting in the worldwide understanding of the mpox outbreak.

Also, at the threshold of 0.28, we count the number of vertical branches that

intersect this line and we count the number of clusters. We identified five clusters

at this threshold and we show these clusters in Figure 18. This thesis’ clustering

research demonstrates the significance of categorizing countries into various clusters

based on their mpox epidemic dynamics. Cluster 1 includes the United States and

Germany, indicating that these countries share underlying characteristics that influ-

ence mpox cases. Cluster 2 includes Brazil and Mexico, which represent countries

with similar tendencies but with significant differences across time. Cluster 3 com-

prises of the United Kingdom, Peru, and Canada, showing that their mpox epidemics

share common patterns and behaviors. Spain and Colombia are included in Cluster

4, indicating common traits and similarities in their mpox data. Finally, Cluster 5

represents France, which has a distinct pattern in comparison to the other countries.

The clusters’ visual representations provide an intuitive grasp of the temporal pat-

terns in each group, aiding the discovery of potential common elements impacting the

virus’s transmission. Policymakers and researchers can gather useful insights into the

mpox outbreak by evaluating the cluster relevance across different countries, iden-

tifying parallels, differences, and potential influencing factors, and making informed
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decisions to limit the impact of the virus.

Figure 19: Clustering Results on Scaled Mpox Data

The clustering technique effectively identified five unique groups, providing im-

portant insights into the dynamics and patterns in the time series data of the top ten

mpox countries. This clustering approach gives different results from simply looking

at the total number of the infected cases (from Figure 1) as the total number of

infections does not necessarily indicate similar trends. Clustering groups countries

based on the similarity of their epidemic time series. When we compare the clus-

tering findings to the R0 values, we can see both similarities and differences in the

groupings. Similarities emerge when countries with similar R0 values are clustered
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together, indicating that their epidemic patterns are comparable. For example, the

United States and Germany, which have greater R0 values, are placed together in

a cluster. Similarly, Brazil and Mexico, which have lower R0 values, are grouped

together. However, there are some distinctions. For example, France and the United

Kingdom have similar R0 values but are put in different clusters, indicating vari-

ances in their epidemic patterns despite comparable transmission rates. As a result,

while R0 gives essential information on disease transmissibility, clustering based on

epidemic time series captures additional nuances and similarities in mpox dynamics,

providing a more thorough understanding of the global epidemiological landscape.

These findings add to a better understanding of country links and trends, which can

aid in making informed decisions and developing suitable policies in a variety of fields.

The Dynamic Time Warping (DTW) method used in this section offers a sig-

nificant improvement over the Ordinary Least Squares (OLS) method explained in

Chapter 2.

First of all, due to its limitations, the OLS approach in Chapter 2 may have had

difficulty defending cross-country comparisons. However, DTW allows for a more

rigorous and reliable comparison of mpox trends across countries, using the entire

time series for the similarity measurement. DTW, thus allows for a more compre-

hensive and relevant examination of similarities and dissimilarities between countries

by generating a distance matrix and determining the DTW distance between pairs of

series.

Also, OLS may not adequately align time series data, potentially resulting in curve

fits that indicate maximum values much below the observed data. DTW, on the other
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hand, aligns time series by taking into account the local distances between matching

items and selecting the optimum alignment path. This alignment ensures that cross-

country comparisons are based on correct and meaningful data correspondences.

Moreover, in Chapter 4, we use hierarchical clustering based on the DTW distance

matrix to uncover clusters and patterns in the mpox data. This approach extends

beyond the restrictions of OLS, allowing for the examination of hierarchical linkages

as well as the identification of similarities and differences between countries based on

time series patterns. The clustering results provide useful insights into the dynamics

and trends of the mpox across different countries.

Finally, by applying the DTW algorithm to the scaled trend data, the DTW

method enables a more precise comparison of the mpox trends, enhanced alignment

of time series data, and the finding of relevant clusters and patterns. These improve-

ments help to gain a better understanding of the links and dynamics among countries

in terms of mpox cases, which ultimately improves the analysis and outcomes of the

study.
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5 CONCLUSION AND FUTURE WORK

In conclusion, this thesis attempted to compare the 2022 mpox outbreak using

mathematical modeling and time series clustering. The study sought to comprehend

the patterns, dynamics, and potential control measures underlying this infectious

disease. Several major conclusions have been clarified through the examination of

data from the World Health Organization concerning the outbreak and the application

of these quantitative methodologies.

To begin, the mathematical modeling approach used in this study provided useful

insights into the transmission dynamics of the mpox virus. The choice of mathemati-

cal model for this research was heavily influenced by the AIC values for both the SEIR

and SIR models. Our SIR model was able to mimic and forecast the disease’s pro-

gression over time. We used Inverse Problems to estimate the effective transmission

rate, the initial susceptible population, the basic reproduction number and the initial

time of the first infected case for each country. Using the bootstrapping method to

construct bootstrap intervals for the estimated parameters brought a critical aspect

of statistical robustness to the modeling results. This resampling technique enabled

the assessment of parameter uncertainties as well as the quantification of model reli-

ability. The bootstrap intervals were useful for understanding the potential range of

parameter values and the corresponding level of confidence in the model’s predictions.

Second, the use of time series clustering with the scaled trend data from the

mathematical model allowed the discovery of various temporal trends within the

mpox outbreak, thus providing a better comparison between mpox outbreaks across

countries. Clusters were generated to reflect different periods or stages of the epidemic
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by grouping similar time series data based on their characteristics and dynamics.

This clustering approach aided in gaining a better understanding of the epidemic’s

progression by identifying important time points, changes in transmission patterns,

and potential risk factors linked with certain clusters.

However, several limitations and opportunities for improvement in this research

must be acknowledged. The mathematical model’s accuracy and dependability are

strongly reliant on the quality and availability of data. Limited data on mpox cases,

particularly in the early phases of the outbreak, may have influenced the model’s

projections. Furthermore, the time series clustering analysis is very dependent on

the clustering techniques and parameters used, which should be carefully studied and

confirmed.

In the future, incorporating additional aspects and complexities, such as spatial

dynamics, individual behavior, and environmental conditions, into the mathematical

model could provide a more thorough understanding of mpox transmission. Future

research should concentrate on refining and expanding the model in order to capture

these nuances and evaluate the impact of targeted interventions. Also, investigat-

ing other clustering algorithms and approaches for time series analysis could provide

additional insights into the outbreak’s temporal patterns and heterogeneity. Com-

parative investigations of various clustering methodologies could improve clustering

analysis and its applications in epidemic characterization.

We may enhance our understanding of mpox outbreaks and contribute to the

development of more effective measures for outbreak preparedness, response, and

control by exploring these prospective research directions.
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APPENDICES

0.1 Mathematical Model Example Code Via MATLAB

%% load data

load ( ’WHO data US .mat ’ )

i nd ex g r e a t e r 1 = find ( new cases smoothed1 > 0 .05∗max( new cases smoothed1 ) ) ;

data = new cases smoothed1 ( i ndex g r e a t e r 1 ) ;

[ data , ia , i c ] = unique ( data , ’ f i r s t ’ ) ;

tdata = datenum( date1 ( i ndex g r e a t e r 1 ) ) ;

tdata = tdata ( i a ) ;

[ tdata , I ] = sort ( tdata , ’ ascend ’ ) ;

data = data ( I ) ;

%% I n i t i a l model

% model wi th an input o f the opt imal va lue o f be ta which was found above

t0 = datenum( date1 (1)) −1;

k0 = 2 . 7 ;

Sh0 = k0∗max( data ) ;

Ih0 = 1 ;

Rh0 = 0 ;

t p l o t = linspace ( t0 , datenum( date1 (end ) ) , 5 0 0 ) ;

[ tp lo t1 , wplot ] = ode45 ( @rhs MP cost f ixedg , tp lo t , w0 , [ ] , qopt ) ;
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0.2 Bootstrap Example Code Via MATLAB

%% Bootstrap

no param = 3 ;

b o o t s t r a p s i z e = 500 ; (500−1000 for a good es t imate )

paramests matr ix = ze ro s ( boo t s t r ap s i z e , l ength ( q0 ) ) ;

r s d l = sq r t ( l ength ( data )/ ( l ength ( data)−no param ) )∗ ( data − iapprox ) ;

f i g u r e (2 ) % s t a r t s a new f i g u r e for e r r o r bounds

f i g u r e (3 ) % s t a r t s a new f i g u r e for boots t rap data s e t s

for m=1: b o o t s t r a p s i z e

d i sp ( s p r i n t f ( ’ boots t rap i t e r a t i o n = %d ’ ,m) )

s r s r e s i d u a l s = randSample ( r sd l , l ength ( r s d l ) , t rue ) ;

i s r s = iapprox + s r s r e s i d u a l s ;

i n d e x g r e a t e r s r s = f i nd ( i s r s > 0 .05∗max( i s r s ) ) ;

i s r s = i s r s ( i n d e x g r e a t e r s r s ) ;

tdata boot = tdata ( i n d e x g r e a t e r s r s ) ;

end

69



0.3 Distance Matrix Code Via Python

#Import ing L i b r a r i e s

import pandas as pd

import numpy as np

from t s l e a r n . u t i l s import t o t im e s e r i e s d a t a s e t

from t s l e a r n . met r i c s import dtw

import s c ipy . c l u s t e r . h i e ra r chy as sch

from s c ipy . c l u s t e r . h i e ra r chy import l inkage , dendrogram

n s e r i e s = fo rmat ted data se t . shape [ 0 ]

d i s t ance mat r i x = np . z e r o s ( shape=( n s e r i e s , n s e r i e s ) )

# Bui ld d i s t ance matrix

for i in range ( n s e r i e s ) :

for j in range ( n s e r i e s ) :

x = fo rmat ted data se t [ i ]

y = fo rmat ted data se t [ j ]

i f i != j :

d i s t = dtw(x , y )

d i s t ance mat r i x [ i , j ] = d i s t

print ( d i s t ance mat r i x )
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0.4 Hierarchical Clustering Code Via Python

n s e r i e s = fo rmat ted data se t . shape [ 0 ]

d i s t ance mat r i x = np . z e r o s ( shape=( n s e r i e s , n s e r i e s ) )

for i in range ( n s e r i e s ) :

for j in range ( n s e r i e s ) :

x = fo rmat ted data se t [ i ]

y = fo rmat ted data se t [ j ]

i f i != j :

d i s t = dtw(x , y )

d i s t ance mat r i x [ i , j ] = d i s t

Z = sch . l i nkage ( d i s tance matr ix , method=’ complete ’ )

p l t . f i g u r e ( f i g s i z e =(10 , 5 ) )

dendrogram = sch . dendrogram (Z , l a b e l s=l a b e l L i s t )

p l t . t i t l e ( ’Dendrogram ’ )

p l t . x l ab e l ( ’ Countr ies ’ )

p l t . y l ab e l ( ’ Distance ’ )

p l t . axh l ine ( y=0.28 , c o l o r=’k ’ , l i n e s t y l e=’−− ’ )

p l t . axh l ine ( y=0.45 , c o l o r=’k ’ , l i n e s t y l e=’ : ’ )

p l t . show ( )
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